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We address the magnetoconductivity of a quantum dot with Rashba spin-orbit interaction within linear-
response theory. As a consequence of the generalized Kohn’s theorem, the magnetoconductivity of the dot is
zero when the spin-orbit coupling is neglected. The inclusion of the spin-orbit interaction violates the men-
tioned theorem and gives rise to a nonzero magnetoconductivity. We derive a simple expression for this
quantity valid up to the second order in the Rashba parameter. In the limit of vanishing lateral confinement, i.e.,
for a quantum well, a similar calculation yields the quantum Hall-effect result.
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I. INTRODUCTION

The quantization of the transverse conductivity in a quan-
tum well, i.e., the two-dimensional electron gas �2DEG�
formed at the interface of a semiconductor heterostructure,
namely, the quantum Hall effect, is one of the most remark-
able discoveries of the last three decades.1–5 The Hall con-
ductivity in a 2DEG can be derived within the linear-
response theory calculating the transverse current response
of this system to a time-dependent in-plane electric field
when it is simultaneously submitted to a perpendicular mag-
netic field and can in principle be extended to other confined
electron systems such as quantum dots or quantum wires.

During the last few years, the effects of the spin-orbit
�SO� coupling in semiconductor nanostructures have also
been the object of an intensive study due to their potential
applications in, e.g., spintronics and in quantum computation
�see, e.g., Ref. 6 and references therein�. In this sense, the
Rashba SO contribution has received special attention since
it was proven that its intensity can be externally tuned via the
application of gate voltages.7 For the particular case of quan-
tum dots, this interaction has been considered in the descrip-
tion of the ground-state structure and the infrared response.8

In this work, we follow the approach indicated above to
calculate the transverse magnetoconductivity of a paraboli-
cally confined GaAs quantum dot in the presence of the
Rashba SO coupling. We show that when the Rashba term is
neglected the magnetoconductivity of the dot is zero owing
to the generalized Kohn’s theorem. On the contrary, the vio-
lation of the latter when the SO interaction is taken into
account yields a nonzero contribution to the magnetoconduc-
tivity that is given by a simple expression valid up to the
second order in the Rashba parameter and in which the key
quantity is the orbital angular momentum of the electrons in
the ground-state configuration. For this system, the magne-
toconductivity arises from the effect of the SO interaction on
the cyclotron resonance, and it might be measured from far-
infrared photoabsorption experiments as in quantum wells.9

This paper is organized as follows. In Sec. II we describe
the method used to calculate the magnetoconductivity. The
obtained results are presented in Sec. III, and some conclu-
sions are drawn in Sec. IV. The calculation of the magneto-

conductivity for a quantum well is presented in the Appen-
dix.

II. THEORETICAL APPROACH

We consider a two-dimensional quantum dot containing N
electrons with charge −e and effective mass m confined by a
parabolic potential with frequency �0. The system is submit-
ted to a uniform magnetic field B perpendicularly applied to
the plane where the electrons move—the x-y plane—that
arises from the vector potential A=B�−y ,x ,0� /2. Within
linear-response theory, if H is the Hamiltonian of the system
and an external time-dependent electric field E is considered
to be applied along the x direction, the transverse magneto-
conductivity �yx of the dot is given by10,11

�yx��� =
�jy�
E

=
i

�
�

n
� �0�jy�n��n�jx�0�

� − �n0
−

�0�jx�n��n�jy�0�
� + �n0

� ,

�1�

where �0� and �n� are, respectively, the ground and excited
states of H with corresponding excitation energies �n0; � is
the frequency of the external electric field, and jq is the cur-
rent in the system along the q direction, with q=x ,y related
to the velocity operator vq

k as

jq = − e�
k=1

N

vq
k, vq

k = − i	qk,H
 . �2�

We have calculated the excited states �n� and energies �n0
entering Eq. �1� with and without taking into account the
spin-orbit coupling.

Without SO interaction, the electronic Hamiltonian
�in �=1 units� of the dot reads as

H = �
k=1

N � Pk
2

2m
+

1

2
m�0

2rk
2 + g��BBsk

z� + �
k�j

N

V��rk − r j�� ,

�3�

where rk, Pk=pk+ e
cA�rk� and sk

z are, respectively, the posi-
tion vector, canonical momentum, and spin z component of
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the kth electron; g� is the effective gyromagnetic factor and
�B is the Bohr magneton. It can be checked that H satisfies
the relation10

	H,m�0
2Q� − i��P�
 = ���m�0

2Q� − i��P�� , �4�

where ��=
�0
2+�c

2 /4��c /2, �c=eB /mc is the cyclotron
frequency, and where we have used the general notation for
the operators F��Fx� iFy.

The result obtained from Eq. �4� is known as the general-
ized Kohn’s theorem and it tells us that the states

1

2m�N

�m�0
2

��

Q� − iP���0� , �5�

with �=
4�0
2+�c

2, are exact and normalized N-electron
eigenstates of H with respective energies E0+��. These
states are known as the bulk and edge magnetoplasmon
resonances of the quantum dot and, according to Eq. �4�, are
the only states that can be excited in photoabsorption reac-
tions with long-wavelength �far-infrared� photons. Such
excitations have been observed in several experiments,12

and it must be stressed that their frequencies are not affected
by the electron-electron �e-e� interaction since
	V��ri−r j�� ,m�0

2Q�− i��P�
=0.
When the spin-orbit interaction is included, the general-

ized Kohn’s theorem is violated. Indeed, the inclusion of the
Bychkov-Rashba13 SO Hamiltonian

HR = �R�
i=1

N

	Py�x − Px�y
i, �6�

in Eq. �4� yields

	H + HR,m�0
2Q� − i��P�


= ���m�0
2Q� − i��P�� � �Rm��0

2 +
1

2
�c���S�,

�7�

where S�=�k=1
N ��

k . This expression shows that in the pres-
ence of SO terms, the bulk and edge magnetoplasmons given
by Eq. �5� are mixed with the spin-flip excitations induced by
the operators S� when acting on the ground state of the
system. We take into account here this mixing when evalu-
ating the transverse magnetoconductivity given by Eq. �1� by
solving only the one-body part of the Hamiltonian and ne-
glecting higher-order corrections to �yx due to the two-body
interaction. To simplify the expressions, in the following we
shall use effective atomic units ��=m=1�, except when giv-
ing the numerical values of the GaAs constants.

We therefore define the single-particle �sp� operators,

a� =
1


2�
�P� �

i

2
��1 − 	�Q�� ,

b� =
1


2�
�P
 �

i

2
��1 + 	�Q
� ,

with 	a− ,a+
= 	b− ,b+
=1, and 	��c /�. In terms of these
operators, the sp Hamiltonian h0 of the quantum dot includ-
ing the Rashba interaction reads as

h0/� =
1

2
+

1 + 	

2
a+a− +

1 − 	

2
b+b− −

1

2

�L

�
�z −

1

4
i�̃R	�1 + 	�

��a+�− − a−�+� + �1 − 	��b−�− − b+�+�
 , �8�

where �L= �g��BB� is the Larmor frequency, and

�̃R��R

2 /�.

We have solved the Schrödinger equation
h0

� �� j�=
 j�� j�
where, in the presence of the Rashba coupling, �� j� is a gen-
eral sp state represented by a two-component spinor

�� j���
� 1

j

� 2
j �. The components � 1

j and � 2
j are expanded into

oscillator states �n ,m� as � 1
j =�n,m=0

� an,m
j �n ,m� and

� 2
j =�n,m=0

� b n,m
j �n ,m�, on which the operators a+ and

a−, and b+ and b− act in the usual way, namely, a+�n ,m�
=
n+1�n+1,m�, a−�n ,m�=
n�n−1,m�, and a−�0,m�=0;
b+�n ,m�=
m+1�n ,m+1�, b−�n ,m�=
m�n ,m−1�, and
b−�n ,0�=0. We also recall that the angular-momentum

operator is given by L̂=a+a−−b+b− with eigenvalues

L̂�n ,m�= �n−m��n ,m���n,m�n ,m�. Substituting �� j� into the
Schrödinger equation, one ends up with the following infinite
system of equations for the coefficients an,m

j and b n,m
j and

energies 
 j needed to compute the magnetoconductivity via
Eq. �1�:

�1 + 	

2
n +

1 − 	

2
m + � − 
 j�b n,m

j

−
i

2
�̃R	�1 + 	�
nan−1,m

j + �1 − 	�
m + 1an,m+1
j 
 = 0,

�1 + 	

2
n +

1 − 	

2
m + � − 
 j�an,m

j

+
i

2
�̃R	�1 + 	�
n + 1b n+1,m

j + �1 − 	�
mb n,m−1
j 
 = 0,

�9�

with n, m�0, a−1,m
j =an,−1

j =b −1,m
j =b n,−1

j =0, and
���1+�L /�� /2, ���1−�L /�� /2. We present in Sec. III
an approximate but very accurate analytical solution of Eq.
�9� that is valid up to the second order in �R

2 .

III. RESULTS

When the Rashba interaction is not included ��R=0� from
the generalized Kohn’s theorem, we know that only the
states given by Eq. �5� can enter Eq. �1�. This yields for the
real part of �yx per unit of surface,

Re	�yx���

L2 = −

e2�

2�
P� �+

2

�2 − �+
2 −

�−
2

�2 − �−
2� , �10�

where � is the electron areal density and P means the prin-
cipal value. From this expression, one can draw the follow-
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ing conclusions. �i� In the direct-current �DC� limit, i.e.,
when �=0, the transverse magnetoconductivity of the quan-
tum dot vanishes since the contributions in Eq. �10� coming
from the two magnetoplasmons with energies �� cancel
each other. �ii� In the limit of vanishing lateral confinement
�0=0—i.e., when the system is a quantum well—one gets
Re	�yx���
 /L2=−e2��cP� 1

�2−�c
2 �. Thus, if � Landau levels

are filled in the system with electron density �=�eB /ch, in
the DC regime one obtains the well-known expression of the
quantum Hall effect, namely, Re	�yx
 /L2=ec� /B=�e2 /h.

Let us now calculate the magnetoconductivity of the
quantum dot including the Rashba SO coupling following
the method indicated in Sec. II. For the GaAs, one has
�R�10−11 eV m ��0.1 effective a.u.� and m=0.067me, me
being the electron mass. This yields �R

2m /�2�100 �eV,
whereas the confinement energy ��0 is often on the order of
several meV. Therefore, for this material, even when B=0
��=�0�, one can safely take the limit �R

2 /��1 in Eq. �9�.
This allows one to obtain an approximate solution for an,m

j ,
b n,m

j , and 
 j by neglecting in these equations all the terms
except those which couple, through the SO interaction, each
level �n ,m� to �n�1,m� or �n ,m�1�. Since the coupling to
all the other levels is of order ��R

2 /��2 or higher, our solution
is valid up to order �R

2 /�.
Defining 	���1�	� /2 and labeling the sp energies 
 j

and spinors �� j�, respectively, as 
n,m
� and �� n,m

� � with
�=u ,d, one then obtains10


n,m
d = 	+n + 	−m + � + 2�R

2� 	+
2n

	+� + �L
−

	−
2�m + 1�

	−� − �L
� ,

�11�

which corresponds to the spinor

�� n,m
d � = �an−1,m


n,m
d

�n − 1,m� + an,m+1

n,m

d

�n,m + 1�

b n,m

n,m

d

�n,m�
� ,

where the coefficients are given by

an−1,m

n,m

d

= i�̃R
	+�
n

	+� + �L
,

an,m+1

n,m

d

= − i�̃R
	−�
m + 1

	−� − �L
,

b n,m

n,m

d

= 1 −
1

2
�̃R

2�2� 	+
2n

�	+� + �L�2 +
	−

2�m + 1�
�	−� − �L�2� ,

and


n,m
u = 	+n + 	−m + � − 2�R

2� 	+
2�n + 1�

	+� + �L
−

	−
2m

	−� − �L
� ,

�12�

corresponding to the spinor

�� n,m
u � = � an,m


n,m
u

�n,m�

b n+1,m

n,m

u

�n + 1,m� + b n,m−1

n,m

u

�n,m − 1�
� ,

where

b n+1,m

n,m

u

= i�̃R
	+�
n + 1

	+� + �L
,

b n,m−1

n,m

u

= − i�̃R
	−�
m

	−� − �L
,

an,m

n,m

u

= 1 −
1

2
�̃R

2�2� 	+
2�n + 1�

�	+� + �L�2 +
	−

2m

�	−� − �L�2� .

Here, the labels u and d refer to what are often called quasi-
spin-up and quasi-spin-down states since in the �R=0 limit
�� n,m

u � and �� n,m
d � become, respectively, �n ,m�� 1

0 � and
�n ,m�� 0

1 �.
We plot in Fig. 1 the single-particle energies given by

Eqs. �11� and �12� as a function of B up to principal quantum
number M �n+m=4 for a GaAs quantum dot with
��0=3.5 meV and �R

2m /�2=0.12 meV. Each of the sets of
lines that tend to converge at B=0 corresponds to one value
of M, from 0 to 4 in increasing energy. The upward, down-
ward, and nearly flat tendencies of the sp states as the mag-
netic field increases depend on whether the corresponding
angular momentum �n,m is positive, negative, or null �when
n=m�, respectively. For high values of B, the lowest-energy
state of each pair is always the quasi-spin-up one, and one
can see that in the quantum-well limit, i.e., when ���c, the
states with the same n �and m=0,1 ,2 , . . .� show a tendency
to collapse giving rise to the well-known Landau-band struc-
ture. Also, the lifting of the degeneracy of the sp levels by
the Rashba interaction can be observed by comparing their

0 2 4 6 8
B (T)

10

20

30

ε nm
u,

d
(m

eV
)

(0,0)u

(0,0)d

(0,1)d

(0,1)u

(0,4)d

(1,0)u

(1,1)d

(2,1)d

(2,2)d

FIG. 1. Single-particle energies �meV� as a function of B �T� for
a quantum dot with ��0=3.5 meV and �R

2m /�2=0.12 meV. For
the sake of clarity, only a few states �� n,m

� � are indicated.
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energies to the ones obtained when neither the SO coupling
nor the Zeeman spin splitting is considered �see, e.g., Fig.
3.2 of Ref. 14�.

The accuracy of this analytical solution has been assessed
by comparing it with an exact numerical one obtained by
direct diagonalization of the Hamiltonian h0. A similar agree-
ment has been found for the quantum-well case when both
Rashba and Dresselhaus SO interactions are simultaneously
taken into account.15 One should keep in mind, however, that
the e-e interaction, and in particular the exchange-correlation
contribution, might alter the ordering of the occupied sp lev-
els. This effect could be especially important at high values
of B because of its competition with the Zeeman term.

We have next calculated the DC magnetoconductivity of
the dot when �R�0 from the relation

�yx�0� = − 2ie2�
n

�0��
k=1

N

yk�n��n��
j=1

N

xj�0� , �13�

which is obtained rewriting Eq. �1� as �yx���
=2i�n

�0�jy�n��n�jx�0�
�2−�n0

2 , taking the limit �=0 and using Eq. �2�,
where now vq

k =−i	qk ,h0
. Equation �13� can be rewritten in
terms of the sp states as

�yx�0� = − 2ie2 �
n,m,�

n�,m�,��

�� n,m
� �y�� n�,m�

�� ��� n�,m�
�� �x�� n,m

� � ,

�14�

where �� n,m
� � and �� n�,m�

�� � are, respectively, occupied and
empty sp states. Expressing the operators x and y in terms of
the creation and annihilation operators defined in Eq. �8�, the
real part of the magnetoconductivity reads as

Re	�yx�0�
 =
e2

�
�

n,m,�

n�,m�,��

�� n,m
� ��a+ + a−� − �b+ + b−��� n�,m�

�� �

��� n�,m�
�� ��a+ − a−� − �b+ − b−��� n,m

� � . �15�

After a straightforward but very tedious calculation, one fi-
nally gets

Re	�yx�0�
 = − 4e2�R
2 	+	−

�	+� + �L��	−� − �L��n,m
�n − m� .

�16�

This equation is the main result of this work. In it, the sum
runs only over the occupied sp states that can be
connected with an empty one such that �n=n�−n=1 or
�m=m�−m=1. Thus, from Fig. 1, if one takes, e.g., N=4
and B=1 T, the states contributing to �yx�0� are the �� 0,0

u,d�
and �� 0,1

u,d� ones, which can be connected to �� 1,0
u,d� and �� 0,2

u,d�,
respectively, yielding �n,m�n−m�=−2.

We have also used this approach in the Appendix to ob-
tain the magnetoconductivity of a quantum well. In this case,
the calculation is much easier to perform and shows that up

to order �R
2 , the Rashba SO interaction does not contribute to

the quantum Hall effect. This is in agreement with the find-
ings of Ref. 16.

Figure 2 shows the magnetoconductivity of dots hosting
N=8 and 10 electrons. One can see that it displays jumps at
the magnetic fields for which the value of the sum �n,m�n,m
changes due to the crossings17 of the sp levels �see Fig. 1�.
Notice that the mentioned possible effect of the e-e interac-
tion on the single-particle levels could also change the values
of the magnetoconductivity. At low magnetic fields, how-
ever, the energy spectrum is more realistically described by
the one-body Hamiltonian and so are the obtained values for
�yx�0�. One might also expect a slight smearing of the pla-
teaus as an effect of the experimental temperature, similar,
e.g., to the thermal smearing of the conductance plateaus of a
quantum wire.18 Finally, we want to stress that contrarily to
other observables for which the SO contribution is just a
small correction, often proportional to �R

2 , Eq. �16� represents
a purely spin-orbit effect. Therefore, its experimental obser-
vation might provide a direct measurement of the SO
strength, which is usually difficult to determine since it de-
pends not only on the electric fields inside the nanostructure
but also on the boundary conditions at the interfaces.19 Al-
though the DC magnetoconductivity is an intrinsic property
of the system, its experimental determination would neces-
sarily require a weak coupling of the dot to the environment.
Such weak coupling could be achieved by means of external
gate contacts, similarly as done in quantum Hall measure-
ments.

IV. CONCLUSIONS

Within the linear-response theory, we have calculated the
transverse magnetoconductivity of a quantum dot with para-
bolic confinement in the presence of the Rashba spin-orbit
coupling. When the intensity of the Rashba SO interaction is
set to zero, there is no magnetoconductivity due to Kohn’s
theorem; whereas when the Rashba coupling is taken into
account the theorem is violated and the magnetoconductivity
of the dot turns out to be proportional to the square of the
Rashba parameter. For a quantum well, the method we have

0 1 2 3 4
B (T)

0

0.4

0.8

1.2

R
e[

σ yx
(0

)]
/(

e2 λ2 R
)

(m
eV

-2
)

-2

-7

-10

-15

-20

0

-4

-8

-12

N=8
N=10

FIG. 2. Magnetoconductivity for the quantum dot of Fig. 1 with
N=8 and 10 as a function of the magnetic field. The numbers indi-
cate the corresponding value of the quantity �n,m�n−m�.
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used yields the known result of the quantum Hall effect with
no correction to the second order in the Rashba intensity
parameter.

ACKNOWLEDGMENTS

This work has been performed under Grant No. FIS2008-
00421 from DGI �Spain�, under Grant No. 2005SGR00343
from Generalitat de Catalunya, and under Grant No.
INFN07-30 from Italian INFN-Spanish DGI agreement.

APPENDIX

In this appendix, we carry out the calculation of the mag-
netoconductivity of a quantum well following the analytical
approach described in Sec. II. The starting point is Eq. �14�.
In this case, we work in the Landau gauge, namely, A
=B�0,x ,0� and, in analogy with the quantum dot case, we
label the sp states as �� n

��, which are expanded in terms of
one-dimensional�1D�-oscillator states �n�. We suppose that
all the electrons are in the quasi-spin-up state, although the
same result is found assuming that they fill the quasi-spin-
down state. Therefore, the quantities to be evaluated are

�� n
u�q�� n�

���, with ��=u ,d. We first recall the commutation
relations 	q , Pq
= i, which for, e.g., q=x, yield

�n�	x,Px
�n�� = �
l

�Xn,lPx
l,n� − Px

n,lXl,n�� = i�n,n�, �A1�

where Xn,l��n�x�l� and Px
n,l��n�Px�l�. Writing the P� opera-

tors defined in Sec. II as function of the creation/annihilation
operators15 �P�=
2�ca

��, one has

Px
n,l = �n�

1

2
�P+ + P−��l� =

1

2
	
2�c�n + 1��n,l+1 + 
2�cl�n,l−1
 ,

�A2�

which, using the property Xn,l=Xl,n
� , yields


2�c�n + 1��Xn,n+1 − Xn,n+1
� � + 
2�cn�Xn,n−1 − Xn,n−1

� � = 2i .

�A3�

From Eq. �A3�, and since the Px
n,l are real, it is easy

to check that the non-null matrix elements are such that
Xn−1,n=−Xn,n−1= i
n / �2�c�. Analogously, for q=y, one finds
Yn−1,n=Yn,n−1=−
n / �2�c�.

If only the Rashba SO coupling is considered, the quasi-
spin-up and quasi-spin-down sp states of the quantum well
can be exactly written as15

�� n
d� = �an−1

d �n − 1�
b n

d�n�
�, �� n

u� = � an
u�n�

b n+1
u �n + 1�

� , �A4�

where the coefficients are given by

an−1
d = i�̃R


n�, an
u = 1 −

1

2
�̃R

2�n + 1��2,

b n
d = 1 −

1

2
�̃R

2n�2, b n+1
u = i�̃R


n + 1� , �A5�

with ���c / ��c+�L�.
The contribution to �yx coming from the state �� n�

u � is

�
n�

�� n
u�y�� n�

u ��� n�
u �x�� n

u�

= �
n�

��an
u�2�an�

u �2Yn,n�Xn�,n + an
u�an�

u b n�+1
u� b n+1

u Yn,n�Xn�+1,n+1

+ b n+1
u� b n�+1

u an�
u�an

uYn+1,n�+1Xn�,n

+ �b n+1
u �2�b n�+1

u �2Yn+1,n�+1Xn�+1,n+1� . �A6�

From the relations �A5� and the expressions for the matrix
elements Xn,l and Yn,l �which limit the sum to the cases
n�=n�1�, to order �R

2 , one has

�
n�

�� n
u�y�� n�

u ��� n�
u �x�� n

u� =
i

2�c
�1 + �̃R

2�2� . �A7�

Analogously, one can find that the contribution coming
from the state �� n�

d � is

�
n�

�� n
u�y�� n�

d ��� n�
d �x�� n

u� = �
n�

��an
u�2�an�−1

d �2Yn,n�−1Xn�−1,n

+ an
u�b n+1

u an�−1
d b n�

d�Yn,n�−1Xn�,n+1

+ b n+1
u� an

ub n�
d an�−1

d� Yn+1,n�Xn�−1,n

+ �b n+1
u �2�b n�

d �2Yn+1,n�Xn�,n+1� .

�A8�

Since in this case only n�=n and n�=n+2 contribute, it re-
duces to

�
n�

�� n
u�y�� n�

d ��� n�
d �x�� n

u� = −
i

2�c
�̃R

2�2. �A9�

Recalling the relation between the density �=N /L2 and the
filling factor �, namely, �=�eB /ch, one finally obtains

�yx�0�
L2 = −

2ie2

L2 �
n�,��

�� n
u�y�� n�

����� n�
���x�� n

u� =
e2N

L2�c
= �

e2

h
,

�A10�

which is the usual expression of the quantum Hall effect for
the 2DEG.
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